domingo, 29 de enero de 2012

Sistema de frenos


Definición de Frenos: Es el conjunto de órganos que intervienen en el frenado y que tienen por función disminuir o anular progresivamente la velocidad de un vehículo, estabilizar esta velocidad o mantener el vehículo inmóvil si se encuentra detenido.


Todo dispositivo de frenado funciona por la aplicación de un esfuerzo ejercido a expensas de una fuente de energía. El dispositivo de frenado se compone de un mando, de una transmisión y del freno propiamente dicho.

Los frenos deben tener capacidad para detener el coche en el menor espacio posible. Además deben tener una buena resistencia a la fatiga y ser fácilmente dosificables. A la hora de una frenada de emergencia lo más habitual es frenar todo lo posible (sobre todo al final), aunque no siempre es lo adecuado, especialmente si no se tiene ABS, que evita que se bloqueen la ruedas, reduciendo la distancia de frenado y sobre todo perdiendo la capacidad de dirección.
Otro sistemas que sí aumentan la capacidad de frenado son el BAS y el reparto electrónico de frenada.

Fuera de las ayudas electrónicas los sistemas mecánicos de frenada también han avanzado. Antes se usaban tambores y actualmente se tienden a poner discos de freno incluso en las ruedas traseras. Una gran mejora de los discos de freno son los discos de carbono y cerámicos que poseen una resistencia inigualable. Los que se usan en Fórmula 1 se llegan a poner incandescentes y siguen frenando sin problemas. Porsche los incluye en algunos de su deportivos, y superan con creces su prueba específica de resistencia a la fatiga, 25 frenadas seguidas desde el 90% de la velocidad máxima hasta la parada.


Un auto es un móvil que se desplaza bajo control del conductor. Es acelerado con la fuerza (torque) y potencia del motor y desacelerado con la resistencia del mismo, pero sobre todo con la aplicación de los frenos, el sistema primordial de seguridad. Un auto pesa entre unos 800 y 2500 Kg. según su tamaño y equipamientos, estando en marcha no se puede parar inmediatamente cuando el motor se desconecta del tren de fuerza, debido a la inercia, la cual varía con la velocidad y para controlarla, disminuirla o anularla, se utilizan los frenos instalados en cada una de las cuatro ruedas.
Los frenos deben responder lo más exactamente posible a la solicitud del conductor. La principal función de un sistema de frenos es la de disminuir o anular progresivamente la velocidad del vehículo, o mantenerlo inmovilizado cuando está detenido Deben ser al mismo tiempo sensibles y graduables para modular la velocidad, y asegurar la detención completa y la inmovilización total del vehículo.  En conjunto las exigencias de los frenos son:
  • Seguridad de funcionamiento 100%
  • Alto confort de frenado
  • Alta resistencia térmica y mecánica
  • Resistencia a la corrosión

Los frenos trabajan por rozamiento entre una parte móvil solidaria a (fijado a) las ruedas y otra parte fija solidaria a la estructura del auto. Al aplicarse los frenos, la parte fija se aprieta a la parte móvil y por fricción se consigue desacelerar el auto. Esta fricción emite calor y absorbe la energía de la inercia (a 120 Km/h un auto de 1.200  Kg aplica una potencia de frenado de más de 200 HP, lo que disipará calor  hasta en una temperatura de 800°C). Para que los frenos sean más eficaces, las superficies en rozamiento deben ser muy planas para lograr un máximo contacto
El sistema de freno principal, o freno de servicio, permite controlar el movimiento del vehículo, llegando a detenerlo si fuera preciso de una forma segura, rápida y eficaz, en cualquier condición de velocidad y carga en las que rueda. Para inmovilizar el vehículo, se utiliza el freno de estacionamiento (conocido también como freno de mano), que puede ser utilizado también como freno de emergencia en caso de fallo del sistema principal. Debe cumplir los requisitos de inmovilizar al vehículo en pendiente, incluso en ausencia del conductor.

Un freno es eficaz, cuando al activarlo se obtiene la detención del vehículo en un tiempo y distancia mínimos. No deben de bloquearse las ruedas para evitar el deslizamiento sobre el pavimento.
La estabilidad de frenada es buena cuando el vehículo no se desvía de su trayectoria. Una frenada es progresiva, cuando el esfuerzo realizado por el conductor es proporcional a la acción de frenado, un frenado brusco ocasiona derramamiento.

Actualmente se trabajan dos tipos principales de sistemas de frenos: Hidráulicos y de Aire. Anteriormente se utilizaban los frenos mecánicos, sistema que hoy ya esta obsoleto. A continuación se describe brevemente las características principales de los sistemas de frenos mecánicos y de aire.

Frenos Mecánicos

Anteriormente se utilizaban frenos mecánicos; en los cuales al momento de presionar el freno con la fuerza del pie, un cable transmitía la fuerza para tratar de frenar el vehículo, estos tipos de frenos dejaron de ser funcionales cuando la potencia de los motores empezó a desarrollarse, ya que debido a las altas velocidades que empezaron a desarrollar los vehículos se requería de un gran esfuerzo físico para lograr frenar un auto, por lo tanto este sistema de frenado quedo obsoleto y se evoluciono hacia los frenos hidráulicos, pues con un esfuerzo mucho menor se logra una potencia de frenado mucho mayor.


Frenos de Aire

La mayoría de los camiones utilizan frenos de aire ya que resulta un sistema más económico y potente. En este caso, la presión ejercida por el pie del chofer en el pedal es asistida por un sistema de aire comprimido (servofreno), bastante más poderoso que los tradicionales pero que, en caso de detenerse el motor (que es quien produce el aire comprimido) representa una pérdida significativa y peligrosa en el poder de frenado. Los frenos de aire son más eficientes para grandes vehículos pero no son tan seguros.




FRENOS HIDRÁULICOS

En función de las exigencias y tipo de vehículo se emplean sistemas con distintas fuerzas de transmisión. En vehículos de turismo se emplean casi siempre sistemas de frenos hidráulicos (“frenos de pedal”) y frenos de estacionamiento (“frenos de mano”).
Este sistema se basa en que los líquidos son prácticamente incompresibles y además de acuerdo con el Principio de Pascal, la presión ejercida sobre un punto cualquiera de una masa líquida se transmite íntegramente en todas direcciones. Al ejercer una fuerza con el pie en un émbolo pequeño el fluido la transmite y, según la relación entre las secciones de los émbolos, la amplifica. También cambia la dirección y el sentido la fuerza aplicada

Los frenos hidráulicos utilizan un fluido para transmitir la acción de frenado. El sistema requiere de:

  • Dispositivo de actuación: medio que permite al conductor generar y controlar la fuerza de frenado deseada.
  • Dispositivo de transmisión: transmite la fuerza de frenado del conductor a los frenos de rueda. Para reducir a un mínimo los riesgos de que falle este dispositivo de seguridad, el sistema de frenos de servicio se divide en dos circuitos independientes. De esta manera cuando falla uno de los circuitos de freno, se mantiene la efectividad del segundo
  • Disposición diagonal: cada circuito frena una rueda delantera y la rueda trasera diagonalmente opuesta. Este división se emplea principalmente en vehículos de tracción delantera
  • Disposición paralela: con cada circuito se frena un eje. El diseño de este tipo de división es lo más sencillo. Este se emplea preferentemente en vehículos con tracción trasera.
  • Frenos de rueda: son los que ejercen la acción de frenado al hacer fricción con la rueda y retardan el movimiento de las ruedas del vehículo, logrando reducir la velocidad o frenar el vehiculo hasta que se detenga completamente.

  • Debajo se muestra imagen de un sistema de frenos hidráulico:


    Los frenos hidráulicos están divididos en dos tipos de sistemas fundamentales: los sistemas hidráulicos, propiamente dichos y los basados en materiales de fricción. En los sistemas hidráulicos, cuando el freno del vehículo es presionado, un cilindro conocido como “maestro” dentro del motor, se encarga de impulsar líquido de frenos a través de una tubería hasta los frenos situados en las ruedas, la presión ejercida por el líquido produce la fuerza necesaria para detener el vehículo.
    Las pastillas ó materiales de fricción, suelen ser piezas metálicas o de cerámica capaces de soportar altas temperaturas. Estas piezas son las encargadas de crear fricción contra una superficie fija (que pueden ser tambores ó discos), logrando así el frenado del vehículo. 

    Definición de cada componente:


    Cilindro maestro

    La bomba de frenos o cilindro maestro es la encargada de proporcionar la debida presión al líquido, enviándolo a los cilindros de las ruedas. Genera la presión hidráulica en el circuito de freno y controla el proceso de frenado. Recibe la presión de pedal de freno a través del auxilio del amplificador de fuerza de frenado y presiona el líquido de freno hasta los cilindros de las ruedas.
    Es una estructura sólida, que lleva incorporado un depósito que le sirve para almacenar fluido (liga de frenos). En la parte interna tiene diseñado un espacio que le sirve para deslizar dos pistones, estos pistones sellan los contornos con hules y su movimiento obedece al empuje que se le da al pedal de freno, y al resorte que lo impulsa para regresarlo.
    El movimiento, que hacen los pistones, dentro de la estructura del cilindro maestro, genera fuerza hidráulica. Esta fuerza es conducida por medio de tuberías y mangueras, hacia los cilindros de las ruedas del vehiculo.

    Válvula dosificadora


    Forma parte del dispositivo de transmisión y permite dividir las líneas de transmisión del fluido en dos circuitos independientes para lograr la disposición diagonal. Los vehículos con tracción delantera, traen esta válvula.
    El cilindro maestro tiene dos circuitos, y tiene dos líneas de salida. Una línea lógicamente llevaría la fuerza del fluido hacia las ruedas traseras, y la otra lo haría, hacia las ruedas delanteras. La válvula dosificadora, recibe la fuerza de las dos líneas y la deriva en dos circuitos, de tal manera, que un circuito, activa los frenos en forma diagonal una rueda de adelante y una de atrás, y el otro circuito activa las otras dos ruedas. La idea es que al frenar, la acción no desestabilice el vehiculo, acentuando el frenado en cualquier rueda. Algunos modelos de cilindro maestro, traen esta función incorporada, mostrando 4 líneas de salida



    Booster (reforzador de frenos por vacío)


    La función del booster, o reforzador de frenos, es minimizar la fuerza requerida, para presionar el pedal, y obtener respuesta de frenado. Es un amplificador de fuerza de frenado que aprovecha la depresión generada en la cámara de combustión para incrementar la fuerza del pie del conductor del vehiculo. Puede amplificar la fuerza del pedal de freno hasta 5 veces.
    Existen básicamente dos tipos de reforzadores: los que aprovechan el vacío del motor (conocidos como hidrovac) y los que utilizan el hidráulico de la dirección (conocidos como hidromax)
    Hidrovac:
    En algunos motores, las depresiones generadas en la cámara de combustión son insuficientes y se instala una bomba de vacío cuya función es generar el vacío que requiere el amplificador de frenado.
    Es una estructura cerrada, dentro se encuentra diseñado un espacio, que es separado en dos ambientes por un diafragma de hule. Cuando el motor esta encendido, se activa el vacío, este se conecta y mantiene presión de vacío en ambos lados del diafragma, al pisar el pedal, se mueve la varilla de operación que abre las válvulas de la presión atmosférica, y cierra las válvulas de vacio.El aire entra a presión atmosférica normal [1 Kg/cm2] a la cámara de vacío constante, en volumen proporcional a la apertura de las válvulas, y empuja el diafragma para aumentar la presión contra la varilla de operación, al soltar el pedal, el resorte de retorno regresa el diafragma, con lo cual se abre la válvula de vacío y se cierra la válvula de presión atmosférica.
    Debido a que el vacío que hace funcionar al booster proviene del motor en funcionamiento; si este se apagara en plena marcha,  el pedal se pondrá bastante duro porque el booster dejo de funcionar pero el sistema de frenos sigue funcionando aun sin asistencia del booster. Lo que sucederá es que se requiere aplicar mayor fuerza al pedal de freno.

    Caliper o Mordaza


    Es la parte que se encuentra instalada en el rotor de freno y tiene la función de recibir la fuerza hidráulica, que viene del cilindro maestro, como respuesta, mueve el pistón que tiene instalado dentro de el, para presionar las pastillas contra el rotor, cumpliéndose de esta forma la acción de frenado En la mayoría de vehículos, los rotores de freno se usan para los frenos de las ruedas delanteras, algunos vehículos usan rotores en las cuato ruedas.
    La mordaza es el soporte de las pastillas y los pistones de freno. Los pistones están generalmente hechos de acero aluminizado o cromado. Hay dos tipos de mordazas: flotantes o fijas. Las fijas no se mueven, en relación al disco de freno, y utilizan uno o más pares de pistones. De este modo, al accionarse, presionan las pastillas a ambos lados del disco. En general son más complejas y caras que las mordazas flotantes. Las mordazas flotantes, también denominadas "mordazas deslizantes", se mueven en relación al disco: un pistón a uno de los lados empuja la pastilla hasta que esta hace contacto con la superficie del disco, haciendo que la mordaza y con ella la pastilla de freno interior se desplacen. De este modo la presión es aplicada a ambos lados del disco y se logra la acción de frenado.
    Las mordazas flotantes pueden fallar debido al enclavamieto de la mordaza. Esto puede ocurrir por suciedad o corrosión, cuando el vehículo no es utilizado por tiempos prolongados. Si esto sucede, la pastilla de freno de la mordaza hará fricción con el disco aún cuando el freno no esté siendo utilizado, ocasionando un desgaste acelerado de la pastilla y una reducción en el rendimiento del combustible.


    Cilindro de rueda


    Esta parte se encuentra ubicada en la estructura, o plato de la rueda de atrás, tiene la función de recibir la fuerza hidráulica que viene del cilindro maestro, y como respuesta genera presión mecánica. Esta fuerza presiona las balatas o zapatas hacia los tambores creando una fricción que obligará al vehiculo a reducir la velocidad hasta frenarlo.





    Mangueras y líneas de conexión


    Son las encargadas de trasladar el fluido desde el cilindro maestro, hacia las ruedas. Lo recomendable sería que toda la conexión fuese a través de líneas o tuberías de metal. Pero el uso de mangueras se debe a que facilitan la conexión en partes movibles como en las partes de las ruedas delanteras (conexión de caliper).
    Una manguera demasiado usada, expande la fuerza hidráulica dentro de ella, dando como consecuencia defectos de frenado.



    Resumen del Funcionamiento del sistema

    Al presionar el pedal, reforzadores multiplican el esfuerzo que el conductor ejerce sobre el pedal al frenar. Este esfuerzo sobre el pedal es transmitido a los frenos por medio de una instalación hidráulica, en la que se dispone un cilindro maestro donde se genera la presión en la liga de frenos y la transmite desde su reservorio hasta cada una de las ruedas. En las ruedas, los discos y tambores dependiendo de la presión que reciben frenan las ruedas.


    TIPOS DE FRENOS HIDRÁULICOS

    Los materiales de fricción que se utilizan son conocidos como balatas y suelen ser piezas metálicas, semi-metálicas o de cerámica que soportan muy altas temperaturas y son los que crean la fricción contra una superficie fija, que pueden ser o tambores o discos; y así logran el frenado de el vehículo. Las balatas son piezas que sufren de desgaste y se tienen que revisar y cambiar en forma periódica.


  • Frenos de disco
  • Frenos de Tambores

  • Frenos de disco:


    Consisten en un disco metálico sujeto a la rueda, en cada una de sus caras están las pastillas, que son planas y, puestas en funcionamiento, aferran el disco con una acción de pinzas. La presión hidráulica ejercida desde el cilindro maestro causa que un pistón presione las pastillas por ambos lados del rotor, esto crea suficiente fricción entre ambas piezas para producir un descenso de la velocidad o la detención total del vehículo.
    En los frenos de discos, el disco puede ser frenado por medio de unas plaquetas (B), que son accionadas por un émbolo (D) y pinza de freno (C), que se aplican lateralmente contra él deteniendo su giro. Suelen ir convenientemente protegidos y refrigerados, para evitar un calentamiento excesivo de los mismos.



    Los frenos de disco pueden ser de tres categorías: flotantes (la tuerca que sostiene las pastillas flota sobre cuatro sostenes de caucho, oscilando cada vez que se aplican los frenos), fijos (está bien sujeta por cuatro pistones, dos de cada lado del disco) o deslizantes (está suspendida por sostenes de caucho y se desliza al entrar en actividad). En la práctica, sus resultados son análogos. Además, para eliminar más rápido el calor resultante de la presión de las pastillas sobre las ruedas -en condiciones extremas de frenado se puede alcanzar los 260 grados de temperatura-, los discos pueden tener espacios huecos entre sus caras (se los llama ventilados).
    Pastillas de freno
    Las pastillas van colocadas dentro de una pinza dotada de un pistón como mínimo, que transforma la presión en fuerza. Las pastillas están diseñadas para producir una alta fricción con el disco. Deben ser reemplazadas regularmente, y muchas están equipadas con un sensor que alerta al conductor cuando es necesario hacerlo. Algunas tienen una pieza de metal que provoca que suene un chirrido cuando están a punto de gastarse, mientras que otras llevan un material que cierra un circuito eléctrico que hace que se ilumine un testigo en el cuadro del conductor.
    La potencia de frenado la determina la estabilidad del factor de fricción de las pastillas. El factor de fricción tiende a disminuir con el aumento de temperatura y velocidad. Al bajar el factor de fricción se prolonga la distancia de frenado.

    Frenos de tambor

    Constan de un tambor de acero o de hierro sujeto a la rueda de forma tal que gira simultáneamente, en su interior, junto al semieje, están las dos pastillas, separadas en su parte inferior por un tornillo de ajuste, y en su parte inferior por un cilindro de rueda. La presión hidráulica ejercida desde el cilindro maestro, causa que el cilindro de rueda presione las pastillas contra las paredes interiores del tambor, produciendo el descenso de velocidad correspondiente.
    En el interior de un freno de tambor van alojadas las zapatas (B), provistas de forros de un material muy resistente al calor y que pueden ser aplicadas contra la periferia interna del tambor por la acción del bombín (C), produciéndose en este caso el frotamiento de ambas partes.
    Como las zapatas van montadas en el plato (D), sujeto al chasis por el sistema de suspensión y que no gira, es el tambor el que queda frenado en su giro por el frotamiento con las zapatas.


    FADING

    Fading (Del verbo inglés fade: desmejorar, marchitar) : Expresión que se utiliza cuando los frenos de un vehículo pierden efectividad debido al sobrecalentamiento de los elementos que están en contacto (discos o tambores y pastillas), que pueden llegar a alcanzar temperaturas incluso superiores a los 500 grados centígrados
    El calentamiento excesivo de los frenos disminuye la adherencia del material empleado en los forros de las zapatas, al mismo tiempo que dilata el tambor, que queda más separado de ellas, por eso aparece el fenómeno llamado “fading”. Una vez que se enfrían, los frenos vuelven a funcionar normalmente. Este fenómeno aparece también cuando el líquido de frenos es de mala calidad y se vaporiza parcialmente en los bombines
    Antiguamente los autos tenían solo tambores, pero estos al acumular calor pierden efectividad, aún cuando algunos tambores tienen aletas de refrigeración para enfriarse más velozmente. Existen discos sólidos y ventilados, estos últimos por su complejidad de fabricación, son más costosos, pero mantienen más baja la temperatura durante la frenada y son más eficientes. Debido a la distribución de peso y su geometría, un auto debe frenar más adelante que atrás, Es por eso que al frente se encuentran los frenos de mayor efectividad y robustez. Los arreglos más comunes son los autos con frenos de discos adelante y tambor atrás. Los más costosos son los que utilizan discos en las cuatro ruedas. La mayoría de estos usan discos ventilados adelante y macizos atrás. 


    SISTEMA ANTIBLOQUEO DE FRENOS

    Pertenece al grupo de los sistemas auxiliares que contribuyen a que los vehículos sean más seguros y fáciles de controlar, independientemente de las condiciones de las autopistas.
    Cuando se aplican los frenos tan fuertemente que bloquean las ruedas, los cauchos patinan sobre el camino. En esa situación, con las ruedas bloqueadas, se pierde el control del vehículo, que por efecto de la inercia se desliza en línea recta sin responder a la dirección aunque se mueva el volante. Para evitar este inconveniente hay dos caminos. Uno es aplicar la presión justa sobre el pedal de freno para impedir el bloqueo, aunque esta maniobra exige ejercitación y entrenamiento para desarrollar la sensibilidad en el pie. La otra solución la aportó la industria del automóvil con el sistema antibloqueo de frenos (ABS), el cual consta de un complejo dispositivo de sensores y bombas electrónicas mantienen a las ruedas en movimiento, aún en situaciones de pánico o frenadas violentas.
    El sistema ABS que evita que los cauchos se deslicen, permitiendo mantener el control del vehículo aun en una situación extrema, aunque el ABS mejora la frenada en todos los terrenos, hay que tener en cuenta que con pisos resbaladizos, las distancias de frenado también son mayores.
    Este tipo de frenos se utilizan en algunos autos que poseen frenos de disco en los cuatro cauchos, llevan un sensor en cada rueda, que compara permanentemente la velocidad de giro (régimen) de cada rueda con la velocidad de giro de las restantes. Dicho régimen puede ser diferente en cada rueda porque en curvas, terrenos deslizantes o en frenadas cada rueda tiene diferentes velocidades y/o superficies. Los cuatro sensores están comunicados con una computadora; y si se reduce repentinamente el régimen de una sola rueda, la computadora da aviso del riesgo de bloqueo, lo que ocasiona que se reduzca de inmediato la presión hidráulica en el tubo de freno de esa rueda, para aumentar a continuación otra vez hasta el límite de bloqueo. Este ciclo se desarrolla varias veces por segundo, sujeto a vigilancia y regulación electrónicas durante toda la operación de frenado. Resultado: el vehículo sigue estable al frenar indistintamente del agarre o patinaje que ofrezca el pavimento; no necesariamente se acorta el recorrido de frenado.

    FRENO DE MANO

    La función del freno de mano o freno de estacionamiento, es la de que un vehículo estacionado no se ponga en movimiento por si solo, aun cuando se puede utilizar como freno de emergencia si es necesario durante la marcha del vehículo.
    Es una palanca que se encuentra al alcance del conductor; la palanca va unida por unos cables a la leva de freno. Al accionar la palanca las levas acciona los dispositivos frenantes de las ruedas ocasionando un frenado que en caso de darse con el vehículo andando suele ser muy brusco.


    LIQUIDO DE FRENOS

    La función de el líquido de frenos es transmitir la presión de la frenada desde el pedal hasta las balatas. Para que se pueda reconocer un buen líquido de frenos se debe de tomar en cuenta que el líquido debe de ser:
  • Incompresible (Que no se comprima en lo mas mínimo)
  • No debe de ocasionar fricción con la tubería del sistema de frenos.
  • No debe ocasionar corrosión, para mantener en el mejor estado posible la tubería. Dado que el líquido de frenos está en contacto permanente con los componentes del circuito (caucho, Cobre, Acero, etc.), deberá poseer propiedades anticorrosivas que impidan la interacción química entre ellos, que supondría el deterioro de los componentes. Nunca se debe de mezclar un líquido mineral con otro sintético.
  • Debe de tener un elevado punto de ebullición (en general oscila entre 230° y 240° C para un líquido nuevo)
  • Debe de tener fluidez aun a bajas temperaturas.

  • Cuando se acciona el pedal de freno, se comprime el líquido que se dirige hasta los cilindros de rueda accionando las zapatas y pastillas de freno. Una de las características del líquido de freno es que el no se comprime, por lo tanto él comprime los accionadores de los frenos en las ruedas (pastillas y zapatas).
    El líquido de freno es hidroscópico, es decir absorbe agua, por lo tanto su vida útil es limitada, si el contenido de agua supera el 3%, la temperatura de ebullición desciende de 80° a 90° C, lo que implica la sustitución del líquido y además no debe utilizarse uno nuevo que se haya mantenido durante un tiempo prolongado en contacto con el aire. Eso indica que cuando hay mucha absorción de agua por el líquido, se pierden sus propiedades de compresibilidad, dificultando el proceso de frenado.
    Los líquidos de frenos sufren una ligera degradación durante los primeros meses de utilización, debido a su poder de absorción de la humedad; pero transcurrido un cierto tiempo se llega a la estabilización de la tasa de humedad, de manera que no es necesario el cambio del líquido.
    Sin embargo, cuando se realizan intervenciones en el circuito de frenos, como el cambio de un cilindro receptor, en las cuales  se rompe la hermeticidad del circuito, es imprescindible realizar el cambio total del líquido de frenos. Los fabricantes recomiendan el cambio cada 80.000 Km. o dos años.

    Agua en el líquido

    En situaciones donde se exigen “frenadas” de emergencia, (incluso hay casos en que el disco de freno se pone al “rojo vivo”) es normal que el líquido de freno se caliente mucho, cuanto más se calienta el líquido mayor es la posibilidad de producir burbujas de vapor que se transformarán en agua. También, si el líquido de freno es de baja calidad, el punto de ebullición es bajo y rápidamente se produce agua.

    FUERZA DE FRENADO

    La fuerza de frenado debe de estar repartida entre los ejes con relación al peso soportado por los mismos, dependiendo de la distribución de los distintos mecanismos, como motor, caja de velocidades, depósito de combustible, etc., y de la transferencia de peso al frenar (que depende fundamentalmente de la altura del centro de gravedad), peso total del vehículo y distancia entre ejes.
    En cuanto a la eficacia del frenado, deben de ser exactamente iguales en las dos ruedas de un mismo eje, para evitar “tiros” hacia uno de los lados, que provocarían la inestabilidad del vehículo en las frenadas.
    Cuando se frena un vehículo, parte de su peso se transfiere hacia el eje delantero, quedando el trasero deslastrado; por esto, la fuerza de frenado aplicada a ambos ejes no debe de ser igual y aunque se disponen en las ruedas delanteras unos cilindros receptores mayores, para obtener más fuerza de frenado sobre ellas, sigue siendo necesario utilizar un mecanismo corrector de frenada que corrija la presión aplicada a las ruedas traseras en función de las circunstancias en que se produzca el frenado. Además el bloqueo de las ruedas traseras durante el frenado, es más peligroso cuando se produce en las traseras, por eso los correctores de frenado, adecuan las fuerzas de frenado de las ruedas traseras, lográndose una mayor estabilidad en el frenado.
    También deben corregir la presión hidráulica en función de la carga y repartir la fuerza de frenado entre los ejes delantero y trasero en función de la deceleración.

    VENTAJAS QUE REPRESENTAN LOS FRENOS DE DISCO FRENTE A LOS DE TAMBOR

    En los últimos 40 años o más, el frenado de vehículos comerciales ha sido ejecutado por frenos a tambor de los más variados modelos y con las tradicionales formas de actuación mecánica, hidráulica y neumática. Los modernos frenos a tambor neumáticos de hoy, alcanzaron el auge de su desarrollo y sofisticación y han atendido a los requisitos de los frenados actuales.
    Los requisitos de eficiencia de frenado están, en todo el mundo, tornándose más severos, haciendo que los vehículos comerciales actuales absorban más energía en el frenado y acorten las distancias de parada.
    Sin embargo, principalmente en el caso de vehículos extra-pesados, las limitaciones de la tecnología tambor / patín expansible se están haciendo más evidentes. Son varios los factores que contribuyen para esto:
    La velocidad promedio de los vehículos está aumentando. Debido a la creciente relación potencia / peso, mejoras en la aerodinámica y el grado de desarrollo de los neumáticos, generando una menor resistencia al rodar. Se sabe que, incluso con un pequeño aumento en la velocidad promedio, resulta en un gran aumento en el esfuerzo de frenado debido a que la energía cinética es función del cuadrado de la velocidad.
    La creciente exigencia y la expectativa de los conductores de vehículos comerciales que desean tener un desempeño de frenado más similar al de los automóviles, particularmente en el caso de la estabilidad, modulación y desempeño en caliente, áreas en las que los frenos a tambor quedan comprometidos en función de sus limitaciones de proyecto.
    La conclusión a la que llegamos es que los vehículos comerciales pesados, en un futuro no muy distante, inevitablemente deberán sufrir una transición de la tecnología del freno a tambor para la nueva tecnología de los frenos a disco.

    Las principales ventajas son de los frenos a disco son:

    El equilibrio de las presiones en ambas caras del disco suprime toda reacción sobre el eje (delantero o trasero) del vehículo; además, estas presiones axiales no producen deformaciones de la superficie de frenado.
    La dilatación transversal bajo el efecto del aumento de temperatura tiende a disminuir el juego entre disco y pastillas; de todas formas, esta dilatación es más pequeña que la radial de los frenos de tambor, lo que facilita el reglaje y simplifica los dispositivos de reglaje automático.
    El disco se encuentra al aire libre y, por ello, su refrigeración está asegurada, retardándose la aparición del fading.
    Los cilindros de freno están situados en el exterior y son mejor refrigerados que en los frenos de tambor, resultando más difícil la aparición del fading por aumento de temperatura del líquido de frenos.
    Menor peso total, que en un automóvil de turismo puede llegar a suponer hasta 100 Kg.
    Mayor facilidad de intervención y sustitución de las guarnituras.
    No pierden eficacia al sumergirlos en agua
    Actualmente los frenos de tambor se siguen utilizando en los vehículos de gama baja debido a su menor coste sobre los frenos de disco.

    SITUACIONES QUE EVIDENCIAN FALLOS EN EL SISTEMA DE FRENOS

  • El aumento de la distancia de frenado.
  • El aumento del recorrido del pedal de freno.
  • Ruidos o vibraciones al momento de frenar.
  • Disminución en el nivel del líquido de frenos.

    Si quieres aumentar información puedes ir a los siguientes enlaces:













  • El sistema de dirección del automóvil


    La dirección de un automóvil o de un vehículo rotor en general es el conjunto de órganos que permiten modificar la orientación de la trayectoria para así poder tomar una curva.
    En los vehículos con ruedas, al actuar sobre el volante (o manillar) el conductor cambia el ángulo de deriva (ángulo entre el plano de la rueda y la trayectoria de la rueda) de la/s rueda/s directriz/directrices. La fuerza creada entre la carretera y el eje de giro hace girar el vehículo.

    Cualidades
    Cualquier mecanismo de dirección deberá ser preciso y fácil de manejar, y las ruedas delanteras tenderán a volver a su posición central al completar una curva. Por otra parte, la dirección no debe transmitir al conductor las irregularidades de la carretera. Para conseguir estas características, debe reunir las siguientes cualidades:
    Suave y cómoda
    El manejo de la dirección se ha de realizar sin esfuerzo, ya que si la dirección es dura, la conducción se hace difícil y fatigosa, lo que representa un cierto peligro por la dificultad que representa su accionamiento.
    La suavidad y la comodidad se conseguirán mediante una precisa desmultiplicación en el sistema de engranaje, una dirección asistida, así como un buen estado de las cotas y el mantenimiento del conjunto.
    Seguridad
    La dirección es uno de los principales factores de seguridad activa. Esta seguridad depende del estudio y construcción del sistema, la calidad de los materiales empleados y de un correcto mantenimiento.
    Precisión
    La precisión consiste en que la dirección responda con exactitud en función de las circunstancias, y no sea ni dura ni blanda, para que las maniobras del conductor se transmitan con precisión. Para ello no ha de haber holguras excesivas entre los órganos de la dirección; las cotas de la dirección han de ser correctas, el desgaste debe ser simétrico en los neumáticos, las ruedas estar bien equilibradas y la presión de los neumáticos correcta.
    Irreversibilidad
    La dirección debe ser semirreversible. Consiste en que el volante ha de transmitir movimiento a las ruedas, pero éstas, a pesar de las irregularidades del terreno, no deben transmitir las oscilaciones al volante. La semirreversibilidad permite que las ruedas recuperen su posición media con un pequeño esfuerzo por parte del conductor después de girar el volante.
    Estable
    Cuando, circulando en recta, al soltar el volante no se desvía el vehículo de su trayectoria.
    Progresiva
    Cuando la apertura de las ruedas, para giros iguales del volante, va en aumento.
    Elementos de mando
    La figura 1, representa la organización clásica de los elementos que constituyen la cadena cinemática que transmite el movimiento de giro del volante a las ruedas, según el sentido de las flechas que se indican.
    Todos los elementos los podemos clasificar en tres grupos:
    o   Volante y árbol de la dirección.
    o   Caja de engranajes de la dirección.
    o   Palancas y barras (timonería) de la dirección.
    El árbol de dirección (A) por su parte superior, va unida al volante (V), y por la inferior a la caja de la dirección (C) donde se transforma el movimiento circular del volante en movimiento lineal. De la caja de dirección llega el movimiento a la barra de acoplamiento (B) a través del brazo de mando (M), biela (L) y palanca de ataque (P), los tres articulados entre sí.
    Los extremos del eje delantero terminan en unas "horquillas" (H) sobre las que se articula el pivote (R) (eje direccional de las ruedas). Del pivote sale la mangueta (E) sobre la que giran locas las ruedas en cojinetes de bolas o rodillos.
    De cada mangueta (E) y fijo a ella sale el brazo de acoplamiento (F). Estos brazos están unidos por la barra de acoplamiento (B) que va articulada en los extremos de ambos brazos.
    ·    Volante y árbol de la dirección
    El volante (V) (fig. 2) es el órgano de mando de la dirección. El diseño del volante varía según el fabricante. El tacto y el grosor deben permitir el uso cómodo y agradable. Se ha de ver cuando el vehículo circula en línea recta, el tablero del vehículo (T).
    El volante presenta una parte central ancha y unos radios también anchos para distribuir la carga del impacto por todo el pecho del conductor, en caso de accidente.
    El árbol de dirección (A)(fig. 3) está protegido por una caja C fijada por un extremo (el inferior) en la caja (E) de engranaje de la dirección, y por el centro o su parte superior, en una brida (B) o soporte que lo sujeta al tablero o a la carrocería del vehículo. Su extremo superior se une al volante (V). El conjunto árbol y caja constituyen la columna de dirección.
    Algunos modelos poseen una columna de dirección ajustable. La parte superior, a la que se conecta el volante, puede moverse telescópicamente y, en algunos casos, colocarse en un ángulo adaptado a la altura y posición del conductor.
    Durante los últimos años se han realizado numerosas pruebas para proteger al conductor de las lesiones que pudiera producirle el árbol de la dirección (o el volante) en caso de choque frontal. El árbol de la dirección está diseñado para evitar estas circunstancias.
    Con el fin de evitar que las vibraciones de la columna se transmitan al volante de la dirección, a veces, se dispone el árbol de la dirección en dos piezas unidas mediante una junta elástica o cardán. Además, en caso de choque frontal, el árbol cederá por esa junta, con lo que el conductor queda protegido del volante.
    En la fig. 4 se representa el árbol de la dirección (detalle A) cómo se encuentra en condiciones normales de funcionamiento y (detalle B), después de un choque frontal.

    ·   Caja y engranajes de la dirección
    El mando de este mecanismo lo ejecuta el conductor con el volante, verdadero órgano de mando, a través de él, comunica a las ruedas directrices sus ordenes.
    El grado de reducción de esfuerzo por parte del conductor conseguido por efecto desmultiplicador del giro del volante de la dirección, depende del peso, tipo y uso del vehículo. Un vehículo deportivo ligero necesitará poca reducción, ya que el conductor ha de ejercer un control rápido del vehículo para corregir derrapes.
    Los coches pesados con neumáticos anchos necesitarán una gran reducción y algún dispositivo de asistencia para poder girar a poca velocidad.
    El mecanismo de la dirección también transmite al volante la reacción de las ruedas respecto a la superficie de la carretera. Esta reacción avisa inmediatamente al conductor de los cambios en las condiciones del piso, pero los fabricantes no se han puesto de acuerdo sobre el grado de reacción que debe percibir.
    La caja del engranaje de la dirección cumple las funciones de proteger del polvo y la suciedad el conjunto de engranajes, contener el aceite en que se halla sumergido éstos y servir de soporte al mecanismo de la dirección, al volante y al brazo. Esta caja se fija al bastidor por medio de tornillos, que aseguran su montaje.
    ·    Palanca y barras de dirección
    Se denomina también timonería de la dirección.
    Tiene la misión de transmitir a las ruedas el movimiento obtenido en la caja de engranaje de la dirección.
    La disposición del conjunto de palanca depende del diseño utilizado por el fabricante.
    El sistema de acoplamiento puede ser mediante barras de acoplamiento divididas en dos e incluso en tres secciones.
    Engranajes de dirección
    · Generalidades
    El sistema de engranajes va montado al final de la columna de la dirección, envuelto en un cárter que se prolonga casi siempre en un tubo que rodea a la columna hasta el volante.
    El sistema de engranajes debe permitir un cambio de dirección fácil sin necesidad de girar muchas vueltas el volante. Los engranajes de tipo más corriente proporcionan una desmultiplicación de 11 ó 12 a 1 en los turismos y de 18 ó más en los camiones pesados, lo que quiere decir que el volante debe girar 2,5 a 3,5 vueltas completas para que las ruedas giren entre sus posiciones extremas.
    Si se transmite el movimiento del volante directamente a las ruedas, tiene el inconveniente de transmitirse (al volante) todas las sacudidas producidas por el camino en las ruedas y éstas tienden, constantemente, a imprimir un giro en el volante. A este tipo de dirección se le llama reversible.
    La dirección irreversible es aquella en que ninguna vibración o esfuerzo de las ruedas se transmite al volante, pero tiene el defecto de que el conductor no percibe estas vibraciones en el volante, habiéndose demostrado prácticamente que no conviene de ninguna manera; además, debido a esta rigidez, las piezas se desgastan y sufren más.
    El tipo actual más corriente es el semi-reversible, intermedio entre los dos anteriores, que tienden ligeramente las ruedas a girar el volante, pero no deja de notar, el conductor en el volante, los efectos de las irregularidades del terreno.
    ·       Sistemas de engranajes de la dirección
    El sistema de engranaje de la dirección, constituye el elemento desmultiplicador de giro del volante y lo forma un conjunto de engranaje protegidos en un cárter y a su vez sirve de unión al bastidor.
    Según la disposición, la forma y los elementos que lo componen, existen los tipos de dirección que se enumeran en el cuadro siguiente:

    ·      Mecanismo de sinfín cilíndrico con tuerca (fig. 5)
    Sobre el tornillo sinfín (F) se desplaza la tuerca (T), que engrana interiormente con el tornillo sinfín. El movimiento de la tuerca se transmite a una palanca (P) que se monta sobre la tuerca. Esta palanca a su vez está unida al eje de giro de la palanca de mando(M) haciéndola girar al accionar el volante de la dirección.

    ·    Mecanismo de sinfín cilíndrico con sector dentado (fig. 6)
    La parte inferior de la barra o columna (C) de la dirección termina en un sinfín (T) donde engrana un sector dentado (S), que lleva fijo en su centro un eje (E), al que va unido el brazo de mando (M). Al girar el volante y, con él, la columna de la dirección, el sector dentado se desplaza sobre el "sinfín" haciendo girar su eje que obliga a oscilar adelante y atrás, al brazo, de mando que, al estar articulado elásticamente a la biela, imprime a ésta un movimiento longitudinal en ambos sentidos.
    ·   Mecanismo de tornillo sinfín cilíndrico con dedo o leva (fig. 7)
    También denominado "palanca y leva". La columna de la dirección termina en un husillo (T) sobre cuya ranura puede desplazarse una leva o dedo (L) fija al extremo de una palanca (P) que mueve el brazo de mando (M). Al mover el volante, la leva se desplaza sobre el husillo, desplazamiento que a través de la palanca produce en el brazo de mando un movimiento longitudinal de delante hacia atrás.
    ·   Mecanismo de tornillo sinfín cilíndrico con tuerca e hilera de bolas
    Se denomina también de circulación de bolas. Sobre el tornillo sinfín (T) (fig. El sistema de dirección del automóvil lleva una tuerca (C) y entre ésta y el tornillo sinfín una hilera de bolas (B) que recorren la hélice del tallado interior del tornillo y de la tuerca.
    La tuerca lleva tallada una cremallera transmitiendo su movimiento a un sector (S) dentado unido al brazo de mando (M).

    ·   Mecanismo de tornillo sinfín globoide y rodillo
    El sinfín globoide (fig. 9) se aplica cuando el elemento de translación se desplaza describiendo un arco al girar sobre su propio eje de giro, como en el sistema tornillo y rodillo. En este sistema la columna (C) lleva en su parte inferior un tornillo (T) roscado sobre el que rueda, engranado en su estría, un rodillo (R) que forma parte del brazo de mando (M), al que imprime un movimiento.
    ·       Mecanismo de dirección por cremallera
    El sistema de esta dirección se caracteriza por la reducción del número de elementos y por su mecanismo desmultiplicador y su simplicidad de montaje. Va acoplada directamente sobre los brazos de acoplamiento de las ruedas y tiene un gran rendimiento mecánico.
    Es un procedimiento de mandar transversalmente la dirección (fig. 10 y 11). La columna (V), termina en un piñón (P), que al girar, desplaza a derecha o izquierda la barra cremallera (C), que mueve las dos bieletas (B), de la barra de acoplamiento. Las bieletas en sus extremos se unen por rótulas (R) con los brazos de acoplamiento (A) desplazándola y orientando las ruedas, las cuales, se desplazan por modificación de sus pivotes.
    La barra-cremallera se articula a ambas partes, (B) de la barra de acoplamiento, mediante las rótulas (R).
    Otras veces, las barras (B) son más largas y se articulan casi juntas a la cremallera (C).
    Actualmente se utiliza en muchos modelos de vehículos de tracción delantera debido su precisión en el desplazamiento angular de las ruedas. Se consigue una gran suavidad en los giros y una recuperación rápida, haciendo que la dirección sea más segura, estable y cómoda.
    Cotas de la dirección
    Entendemos como cotas de la dirección aquellos factores que intervienen para obtener una dirección válida. El tren delantero debe ser estudiado siguiendo una geometría precisa que nos va a permitir responder a las exigencias esenciales de:
    o       Estabilidad.
    o Conservación mecánica.
    o     Conservación de los neumáticos.
    Por otra parte, una buena geometría del tren delantero llegará hasta la obtención de una dirección segura y cómoda, que se manifiesta por:
    o El mantenimiento en trayectoria rectilínea.
    o   La insensibilidad a factores exteriores (baches, viento, etc.).
    o   Las entradas y salidas fáciles de las curvas.
    Podemos decir que la dirección debe ser estable y para conseguirlo se consideran dos factores:
    o    La geometría de giro.
    o    La geometría de las ruedas o cotas geométricas, que son:
    §    El ángulo de salida o inclinación.
    §       El ángulo de caída.
    §       El ángulo de avance.
    §      Las cotas conjugadas.
    §   La convergencia o divergencia (alineación de las ruedas).




    ·    Geometría de giro
    El vehículo al tomar una curva, la trayectoria a seguir por las ruedas directrices no es la misma ya que, cada una de ellas, tiene distinto radio de curvatura. Por tanto, la orientación dada a ambas ruedas son distintas para evitar que una de las ruedas sea arrastrada, efecto que ocurriría si los dos ángulos fueran iguales.
    Para que esto no ocurra, (fig. 12) las dos ruedas deben girar concéntricas, o sea, con el mismo centro de rotación.
    Lo mismo ocurre con las ruedas traseras con respecto a las delanteras ya que, como todo el vehículo tiene que tomar la misma trayectoria de la curva, todo él tiene que tener el mismo centro de rotación. Para ello (fig. 13) tiene que cumplirse la condición geométrica de que todas las ruedas en cualquier posición tengan un mismo centro de rotación (O).

    Esto se consigue (fig. 14) dando a los brazos de acoplamiento una inclinación tal, que cuando el vehículo circule en línea recta, los ejes de prolongación de los brazos de acoplamiento coincidan en el centro del eje trasero ,y al tomar una curva, los ejes de las ruedas coincidan sobre un mismo centro (O).



    dirección auto
    Dirección asistida
    ·      Dirección asistida hidráulica
    Para facilitar al conductor la ejecución de las maniobras con el vehículo, se emplean las servo-direcciones o direcciones asistidas, que tienen como misión el ayudar al conductor a orientar en la dirección deseada las ruedas directrices, ayuda que es imprescindible en camiones pesados y autobuses.
    Para conseguir esta ayuda puede utilizarse como fuente de energía la proporcionada por: vacío de la admisión, aire comprimido o fuerza hidráulica.
    De estas tres fuentes de energía, la del vacío de la admisión es muy poco usada; el aire comprimido, queda limitado su empleo a los vehículos que lo utilizan para el mando de los frenos; la hidráulica es la más empleada. El dispositivo de la dirección asistida que utiliza esta última es la siguiente (fig. 22) :
    Está constituido por un cilindro móvil (C) solidario a la biela transversal (A) de la dirección. En el interior hay un émbolo (E) centrado, que va unido al bastidor (H) del vehículo; por lo tanto, inmóvil. A ambos lados del émbolo puede ser enviado líquido desde una válvula de mando en la que una válvula corredera (V), desplazable en ambos sentidos, intercomunica o interrumpe el paso del líquido al cilindro a uno u otro lado del émbolo.
    Cuando se gira el volante (G), se mueve el brazo del mando (M) y, con él, la biela de la dirección que mueve ésta y, a la vez, la corredera de la válvula de mando, permitiendo el paso de líquido a un lado del émbolo; al ser el émbolo fijo, el líquido obliga a desplazarse al cilindro que, por estar unido a la barra de acoplamiento (T) de la dirección, la mueve hacia un lado, sumándose este movimiento al directo imprimido por el volante (G), ayudando, con ello, a la orientación de las ruedas y, en definitiva, al conductor.
    El líquido es enviado por la válvula de mando a uno u otro lado del émbolo, según se gire el volante.
    La presión del líquido necesaria para conseguir el desplazamiento del cilindro unido a la biela, se consigue con una bomba (B) de engranajes que es accionada por la correa que transmite el movimiento del cigüeñal. El líquido procede de depósito (D) que, por un tubo, se comunica con la válvula de mando. Una válvula de descarga, instalada entre el tubo que lleva el líquido a la bomba y el de comunicación del depósito con la válvula de mando, mantiene constante la presión.
    ·      Dirección asistida neumática (fig. 23)

    Los grandes y rápidos camiones son difíciles de dirigir, pues sobre sus grandes cubiertas de mucha sección, gravitan grandes cargas que aumentan su resistencia al giro.
    Se utilizan para su accionamiento aire a presión procedente del sistema neumático del que van dotados los vehículos con frenos de aire comprimido.
    En esencia no es más que un cilindro (C) (servo neumático) con un pistón (E), enlazado por medio de una eje (J) con el brazo de mando de la dirección (B), para ayudar a los desplazamientos de éste. Por ambas caras del pistón puede entrar, alternativamente la presión atmosférica o el aire a presión. Esto trae como consecuencia el desplazamiento del pistón en un sentido o en otro y, por lo tanto, la ayuda en el movimiento del brazo de mando. Para que pase aire a presión, tiene una válvula de control (V) que se acciona al iniciar el giro el volante. El aire sobrante en el cilindro sale al exterior a través de la válvula correspondiente (de destreza).
    La presión del aire suministrado desde la tubería al cilindro es proporcional al desplazamiento de la varilla de control.

    para mayor información visitar los siguientes enlaces: